Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Elife ; 122023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38149844

RESUMO

Insulin resistance (IR) is a complex metabolic disorder that underlies several human diseases, including type 2 diabetes and cardiovascular disease. Despite extensive research, the precise mechanisms underlying IR development remain poorly understood. Previously we showed that deficiency of coenzyme Q (CoQ) is necessary and sufficient for IR in adipocytes and skeletal muscle (Fazakerley et al., 2018). Here, we provide new insights into the mechanistic connections between cellular alterations associated with IR, including increased ceramides, CoQ deficiency, mitochondrial dysfunction, and oxidative stress. We demonstrate that elevated levels of ceramide in the mitochondria of skeletal muscle cells result in CoQ depletion and loss of mitochondrial respiratory chain components, leading to mitochondrial dysfunction and IR. Further, decreasing mitochondrial ceramide levels in vitro and in animal models (mice, C57BL/6J) (under chow and high-fat diet) increased CoQ levels and was protective against IR. CoQ supplementation also rescued ceramide-associated IR. Examination of the mitochondrial proteome from human muscle biopsies revealed a strong correlation between the respirasome system and mitochondrial ceramide as key determinants of insulin sensitivity. Our findings highlight the mitochondrial ceramide-CoQ-respiratory chain nexus as a potential foundation of an IR pathway that may also play a critical role in other conditions associated with ceramide accumulation and mitochondrial dysfunction, such as heart failure, cancer, and aging. These insights may have important clinical implications for the development of novel therapeutic strategies for the treatment of IR and related metabolic disorders.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Doenças Mitocondriais , Humanos , Camundongos , Animais , Ubiquinona , Transporte de Elétrons , Diabetes Mellitus Tipo 2/metabolismo , Ceramidas/metabolismo , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Doenças Mitocondriais/patologia
2.
Mol Metab ; 72: 101715, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37019209

RESUMO

OBJECTIVE: A buildup of skeletal muscle plasma membrane (PM) cholesterol content in mice occurs within 1 week of a Western-style high-fat diet and causes insulin resistance. The mechanism driving this cholesterol accumulation and insulin resistance is not known. Promising cell data implicate that the hexosamine biosynthesis pathway (HBP) triggers a cholesterolgenic response via increasing the transcriptional activity of Sp1. In this study we aimed to determine whether increased HBP/Sp1 activity represented a preventable cause of insulin resistance. METHODS: C57BL/6NJ mice were fed either a low-fat (LF, 10% kcal) or high-fat (HF, 45% kcal) diet for 1 week. During this 1-week diet the mice were treated daily with either saline or mithramycin-A (MTM), a specific Sp1/DNA-binding inhibitor. A series of metabolic and tissue analyses were then performed on these mice, as well as on mice with targeted skeletal muscle overexpression of the rate-limiting HBP enzyme glutamine-fructose-6-phosphate-amidotransferase (GFAT) that were maintained on a regular chow diet. RESULTS: Saline-treated mice fed this HF diet for 1 week did not have an increase in adiposity, lean mass, or body mass while displaying early insulin resistance. Consistent with an HBP/Sp1 cholesterolgenic response, Sp1 displayed increased O-GlcNAcylation and binding to the HMGCR promoter that increased HMGCR expression in skeletal muscle from saline-treated HF-fed mice. Skeletal muscle from these saline-treated HF-fed mice also showed a resultant elevation of PM cholesterol with an accompanying loss of cortical filamentous actin (F-actin) that is essential for insulin-stimulated glucose transport. Treating these mice daily with MTM during the 1-week HF diet fully prevented the diet-induced Sp1 cholesterolgenic response, loss of cortical F-actin, and development of insulin resistance. Similarly, increases in HMGCR expression and cholesterol were measured in muscle from GFAT transgenic mice compared to age- and weight-match wildtype littermate control mice. In the GFAT Tg mice we found that these increases were alleviated by MTM. CONCLUSIONS: These data identify increased HBP/Sp1 activity as an early mechanism of diet-induced insulin resistance. Therapies targeting this mechanism may decelerate T2D development.


Assuntos
Resistência à Insulina , Camundongos , Animais , Resistência à Insulina/fisiologia , Actinas/metabolismo , Camundongos Endogâmicos C57BL , Colesterol/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos Transgênicos , Hexosaminas/metabolismo
3.
bioRxiv ; 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36945619

RESUMO

Insulin resistance (IR) is a complex metabolic disorder that underlies several human diseases, including type 2 diabetes and cardiovascular disease. Despite extensive research, the precise mechanisms underlying IR development remain poorly understood. Here, we provide new insights into the mechanistic connections between cellular alterations associated with IR, including increased ceramides, deficiency of coenzyme Q (CoQ), mitochondrial dysfunction, and oxidative stress. We demonstrate that elevated levels of ceramide in the mitochondria of skeletal muscle cells results in CoQ depletion and loss of mitochondrial respiratory chain components, leading to mitochondrial dysfunction and IR. Further, decreasing mitochondrial ceramide levels in vitro and in animal models (under chow and high fat diet) increased CoQ levels and was protective against IR. CoQ supplementation also rescued ceramide-associated IR. Examination of the mitochondrial proteome from human muscle biopsies revealed a strong correlation between the respirasome system and mitochondrial ceramide as key determinants of insulin sensitivity. Our findings highlight the mitochondrial Ceramide-CoQ-respiratory chain nexus as a potential foundation of an IR pathway that may also play a critical role in other conditions associated with ceramide accumulation and mitochondrial dysfunction, such as heart failure, cancer, and aging. These insights may have important clinical implications for the development of novel therapeutic strategies for the treatment of IR and related metabolic disorders.

4.
Nat Commun ; 14(1): 923, 2023 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-36808134

RESUMO

The failure of metabolic tissues to appropriately respond to insulin ("insulin resistance") is an early marker in the pathogenesis of type 2 diabetes. Protein phosphorylation is central to the adipocyte insulin response, but how adipocyte signaling networks are dysregulated upon insulin resistance is unknown. Here we employ phosphoproteomics to delineate insulin signal transduction in adipocyte cells and adipose tissue. Across a range of insults causing insulin resistance, we observe a marked rewiring of the insulin signaling network. This includes both attenuated insulin-responsive phosphorylation, and the emergence of phosphorylation uniquely insulin-regulated in insulin resistance. Identifying dysregulated phosphosites common to multiple insults reveals subnetworks containing non-canonical regulators of insulin action, such as MARK2/3, and causal drivers of insulin resistance. The presence of several bona fide GSK3 substrates among these phosphosites led us to establish a pipeline for identifying context-specific kinase substrates, revealing widespread dysregulation of GSK3 signaling. Pharmacological inhibition of GSK3 partially reverses insulin resistance in cells and tissue explants. These data highlight that insulin resistance is a multi-nodal signaling defect that includes dysregulated MARK2/3 and GSK3 activity.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Insulina/metabolismo , Resistência à Insulina/fisiologia , Fosforilação , Transdução de Sinais/fisiologia , Proteoma/metabolismo
5.
Mol Metab ; 64: 101550, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35921984

RESUMO

OBJECTIVES: Tirzepatide, a dual GIP and GLP-1 receptor agonist, delivered superior glycemic control and weight loss compared to selective GLP-1 receptor (GLP-1R) agonism in patients with type 2 diabetes (T2D). These results have fueled mechanistic studies focused on understanding how tirzepatide achieves its therapeutic efficacy. Recently, we found that treatment with tirzepatide improves insulin sensitivity in humans with T2D and obese mice in concert with a reduction in circulating levels of branched-chain amino (BCAAs) and keto (BCKAs) acids, metabolites associated with development of systemic insulin resistance (IR) and T2D. Importantly, these systemic effects were found to be coupled to increased expression of BCAA catabolic genes in thermogenic brown adipose tissue (BAT) in mice. These findings led us to hypothesize that tirzepatide may lower circulating BCAAs/BCKAs by promoting their catabolism in BAT. METHODS: To address this question, we utilized a murine model of diet-induced obesity and employed stable-isotope tracer studies in combination with metabolomic analyses in BAT and other tissues. RESULTS: Treatment with tirzepatide stimulated catabolism of BCAAs/BCKAs in BAT, as demonstrated by increased labeling of BCKA-derived metabolites, and increases in levels of byproducts of BCAA breakdown, including glutamate, alanine, and 3-hydroxyisobutyric acid (3-HIB). Further, chronic administration of tirzepatide increased levels of multiple amino acids in BAT that have previously been shown to be elevated in response to cold exposure. Finally, chronic treatment with tirzepatide led to a substantial increase in several TCA cycle intermediates (α-ketoglutarate, fumarate, and malate) in BAT. CONCLUSIONS: These findings suggest that tirzepatide induces a thermogenic-like amino acid profile in BAT, an effect that may account for reduced systemic levels of BCAAs in obese IR mice.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Tecido Adiposo Marrom/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Polipeptídeo Inibidor Gástrico , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Humanos , Camundongos , Camundongos Obesos
6.
J Lipid Res ; 63(10): 100270, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36030929

RESUMO

Serum ceramides, especially C16:0 and C18:0 species, are linked to CVD risk and insulin resistance, but details of this association are not well understood. We performed this study to quantify a broad range of serum sphingolipids in individuals spanning the physiologic range of insulin sensitivity and to determine if dihydroceramides cause insulin resistance in vitro. As expected, we found that serum triglycerides were significantly greater in individuals with obesity and T2D compared with athletes and lean individuals. Serum ceramides were not significantly different within groups but, using all ceramide data relative to insulin sensitivity as a continuous variable, we observed significant inverse relationships between C18:0, C20:0, and C22:0 species and insulin sensitivity. Interestingly, we found that total serum dihydroceramides and individual species were significantly greater in individuals with obesity and T2D compared with athletes and lean individuals, with C18:0 species showing the strongest inverse relationship to insulin sensitivity. Finally, we administered a physiological mix of dihydroceramides to primary myotubes and found decreased insulin sensitivity in vitro without changing the overall intracellular sphingolipid content, suggesting a direct effect on insulin resistance. These data extend what is known regarding serum sphingolipids and insulin resistance and show the importance of serum dihydroceramides to predict and promote insulin resistance in humans.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Resistência à Insulina/fisiologia , Ceramidas , Esfingolipídeos , Obesidade , Triglicerídeos
7.
J Cachexia Sarcopenia Muscle ; 12(5): 1232-1248, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34342159

RESUMO

BACKGROUND: Type 2 diabetes and obesity are often seen concurrently with skeletal muscle wasting, leading to further derangements in function and metabolism. Muscle wasting remains an unmet need for metabolic disease, and new approaches are warranted. The neuropeptide urocortin 2 (UCN2) and its receptor corticotropin releasing factor receptor 2 (CRHR2) are highly expressed in skeletal muscle and play a role in regulating energy balance, glucose metabolism, and muscle mass. The aim of this study was to investigate the effects of modified UCN2 peptides as a pharmaceutical therapy to counteract the loss of skeletal muscle mass associated with obesity and casting immobilization. METHODS: High-fat-fed mice (C57Bl/6J; 26 weeks old) and ob/ob mice (11 weeks old) were injected daily with a PEGylated (Compound A) and non-PEGylated (Compound B) modified human UCN2 at 0.3 mg/kg subcutaneously for 14 days. A separate group of chow-fed C57Bl/6J mice (12 weeks old) was subjected to hindlimb cast immobilization and, after 1 week, received daily injections with Compound A. In vivo functional tests were performed to measure protein synthesis rates and skeletal muscle function. Ex vivo functional and molecular tests were performed to measure contractile force and signal transduction of catabolic and anabolic pathways in skeletal muscle. RESULTS: Skeletal muscles (extensor digitorum longus, soleus, and tibialis anterior) from high-fat-fed mice treated with Compound A were ~14% heavier than muscles from vehicle-treated mice. Chronic treatment with modified UCN2 peptides altered the expression of structural genes and transcription factors in skeletal muscle in high-fat diet-induced obesity including down-regulation of Trim63 and up-regulation of Nr4a2 and Igf1 (P < 0.05 vs. vehicle). Signal transduction via both catabolic and anabolic pathways was increased in tibialis anterior muscle, with increased phosphorylation of ribosomal protein S6 at Ser235/236 , FOXO1 at Ser256 , and ULK1 at Ser317 , suggesting that UCN2 treatment modulates protein synthesis and degradation pathways (P < 0.05 vs. vehicle). Acutely, a single injection of Compound A in drug-naïve mice had no effect on the rate of protein synthesis in skeletal muscle, as measured via the surface sensing of translation method, while the expression of Nr4a3 and Ppargc1a4 was increased (P < 0.05 vs. vehicle). Compound A treatment prevented the loss of force production from disuse due to casting. Compound B treatment increased time to fatigue during ex vivo contractions of fast-twitch extensor digitorum longus muscle. Compound A and B treatment increased lean mass and rates of skeletal muscle protein synthesis in ob/ob mice. CONCLUSIONS: Modified human UCN2 is a pharmacological candidate for the prevention of the loss of skeletal muscle mass associated with obesity and immobilization.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Animais , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético , Obesidade/tratamento farmacológico , Obesidade/etiologia , Peptídeos , Urocortinas
8.
Nat Commun ; 12(1): 1680, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33723250

RESUMO

Branched-chain amino acids (BCAA) and their cognate α-ketoacids (BCKA) are elevated in an array of cardiometabolic diseases. Here we demonstrate that the major metabolic fate of uniformly-13C-labeled α-ketoisovalerate ([U-13C]KIV) in the heart is reamination to valine. Activation of cardiac branched-chain α-ketoacid dehydrogenase (BCKDH) by treatment with the BCKDH kinase inhibitor, BT2, does not impede the strong flux of [U-13C]KIV to valine. Sequestration of BCAA and BCKA away from mitochondrial oxidation is likely due to low levels of expression of the mitochondrial BCAA transporter SLC25A44 in the heart, as its overexpression significantly lowers accumulation of [13C]-labeled valine from [U-13C]KIV. Finally, exposure of perfused hearts to levels of BCKA found in obese rats increases phosphorylation of the translational repressor 4E-BP1 as well as multiple proteins in the MEK-ERK pathway, leading to a doubling of total protein synthesis. These data suggest that elevated BCKA levels found in obesity may contribute to pathologic cardiac hypertrophy via chronic activation of protein synthesis.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Coração/fisiologia , Hemiterpenos/metabolismo , Cetoácidos/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Obesidade/metabolismo , Ratos , Valina/metabolismo
9.
Obesity (Silver Spring) ; 29(3): 550-561, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33624435

RESUMO

OBJECTIVE: Sex differences in insulin sensitivity are present throughout the life-span, with men having a higher prevalence of insulin resistance and diabetes compared with women. Differences in lean mass, fat mass, and fat distribution-particularly ectopic fat-have all been postulated to contribute to the sexual dimorphism in diabetes risk. Emerging data suggest ectopic lipid composition and subcellular localization are most relevant; however, it is not known whether they explain sex differences in obesity-induced insulin resistance. METHODS: To address this gap, this study evaluated insulin sensitivity and subcellular localization of intramuscular triacylglycerol, diacylglycerol, and sphingolipids as well as muscle acylcarnitines and serum lipidomics in people with obesity. RESULTS: Insulin sensitivity was significantly lower in men (P < 0.05); however, no sex differences were found in localization of intramuscular triacylglycerol, diacylglycerol, or sphingolipids in skeletal muscle. In contrast, men had higher total muscle acylcarnitine (P < 0.05) and long-chain muscle acylcarnitine (P < 0.05), which were related to lower insulin sensitivity (r = -0.42, P < 0.05). Men also displayed higher serum ceramide (P = 0.05) and lysophosphatidylcholine (P < 0.01). CONCLUSIONS: These data reveal novel sex-specific associations between lipid species involved in the coupling of mitochondrial fatty acid transport, ß-oxidation, and tricarboxylic acid cycle flux that may provide therapeutic targets to improve insulin sensitivity.


Assuntos
Carnitina/análogos & derivados , Resistência à Insulina/fisiologia , Músculo Esquelético/metabolismo , Adulto , Carnitina/análise , Carnitina/metabolismo , Ciclo do Ácido Cítrico/fisiologia , Estudos de Coortes , Feminino , Técnica Clamp de Glucose , Teste de Tolerância a Glucose , Humanos , Insulina/sangue , Metabolismo dos Lipídeos/fisiologia , Masculino , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/química , Músculo Esquelético/ultraestrutura , Obesidade/etiologia , Obesidade/metabolismo , Oxirredução , Caracteres Sexuais , Esfingolipídeos/metabolismo , Frações Subcelulares/química , Frações Subcelulares/metabolismo
10.
Cell Rep ; 33(6): 108375, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33176135

RESUMO

Glycine levels are inversely associated with branched-chain amino acids (BCAAs) and cardiometabolic disease phenotypes, but biochemical mechanisms that explain these relationships remain uncharted. Metabolites and genes related to BCAA metabolism and nitrogen handling were strongly associated with glycine in correlation analyses. Stable isotope labeling in Zucker fatty rats (ZFRs) shows that glycine acts as a carbon donor for the pyruvate-alanine cycle in a BCAA-regulated manner. Inhibition of the BCAA transaminase (BCAT) enzymes depletes plasma pools of alanine and raises glycine levels. In high-fat-fed ZFRs, dietary glycine supplementation raises urinary acyl-glycine content and lowers circulating triglycerides but also results in accumulation of long-chain acyl-coenzyme As (acyl-CoAs), lower 5' adenosine monophosphate-activated protein kinase (AMPK) phosphorylation in muscle, and no improvement in glucose tolerance. Collectively, these studies frame a mechanism for explaining obesity-related glycine depletion and also provide insight into the impact of glycine supplementation on systemic glucose, lipid, and amino acid metabolism.


Assuntos
Glicina/metabolismo , Fígado/fisiopatologia , Músculo Esquelético/fisiopatologia , Nitrogênio/metabolismo , Obesidade/fisiopatologia , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Masculino , Ratos , Ratos Zucker
11.
J Biol Chem ; 295(15): 4902-4911, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32132172

RESUMO

Obesity and elevation of circulating free fatty acids are associated with an accumulation and proinflammatory polarization of macrophages within metabolically active tissues, such as adipose tissue, muscle, liver, and pancreas. Beyond macrophages, neutrophils also accumulate in adipose and muscle tissues during high-fat diets and contribute to a state of local inflammation and insulin resistance. However, the mechanisms by which neutrophils are recruited to these tissues are largely unknown. Here we used a cell culture system as proof of concept to show that, upon exposure to a saturated fatty acid, palmitate, macrophages release nucleotides that attract neutrophils. Moreover, we found that palmitate up-regulates pannexin-1 channels in macrophages that mediate the attraction of neutrophils, shown previously to allow transfer of nucleotides across membranes. These findings suggest that proinflammatory macrophages release nucleotides through pannexin-1, a process that may facilitate neutrophil recruitment into metabolic tissues during obesity.


Assuntos
Tecido Adiposo/metabolismo , Conexinas/fisiologia , Inflamação/imunologia , Macrófagos/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Neutrófilos/metabolismo , Nucleotídeos/farmacologia , Palmitatos/farmacologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/imunologia , Animais , Feminino , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Resistência à Insulina , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia
12.
Mol Metab ; 30: 131-139, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31767164

RESUMO

OBJECTIVE: Fibroblast growth factor 19 (FGF19) is a postprandial hormone which plays diverse roles in the regulation of bile acid, glucose, and lipid metabolism. Administration of FGF19 to obese/diabetic mice lowers body weight, improves insulin sensitivity, and enhances glycemic control. The primary target organ of FGF19 is the liver, where it regulates bile acid homeostasis in response to nutrient absorption. In contrast, the broader pharmacologic actions of FGF19 are proposed to be driven, in part, by the recruitment of the thermogenic protein uncoupling protein 1 (UCP1) in white and brown adipose tissue. However, the precise contribution of UCP1-dependent thermogenesis to the therapeutic actions of FGF19 has not been critically evaluated. METHODS: Using WT and germline UCP1 knockout mice, the primary objective of the current investigation was to determine the in vivo pharmacology of FGF19, focusing on its thermogenic and anti-obesity activity. RESULTS: We report that FGF19 induced mRNA expression of UCP1 in adipose tissue and show that this effect is required for FGF19 to increase caloric expenditure. However, we demonstrate that neither UCP1 induction nor an elevation in caloric expenditure are necessary for FGF19 to induce weight loss in obese mice. In contrast, the anti-obesity action of FGF19 appeared to be associated with its known physiological role. In mice treated with FGF19, there was a significant reduction in the mRNA expression of genes associated with hepatic bile acid synthesis enzymes, lowered levels of hepatic bile acid species, and a significant increase in fecal energy content, all indicative of reduced lipid absorption in animals treated with FGF19. CONCLUSION: Taken together, we report that the anti-obesity effect of FGF19 occurs in the absence of UCP1. Our data suggest that the primary way in which exogenous FGF19 lowers body weight in mice may be through the inhibition of bile acid synthesis and subsequently a reduction of dietary lipid absorption.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Proteína Desacopladora 1/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Peso Corporal , Diabetes Mellitus Experimental/metabolismo , Dieta Hiperlipídica , Metabolismo Energético , Fatores de Crescimento de Fibroblastos/genética , Resistência à Insulina , Metabolismo dos Lipídeos , Lipogênese , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Obesidade/metabolismo , Termogênese , Proteína Desacopladora 1/genética
13.
Am J Physiol Endocrinol Metab ; 317(2): E362-E373, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31237447

RESUMO

Skeletal muscle insulin resistance manifests shortly after high-fat feeding, yet mechanisms are not known. Here we set out to determine whether excess skeletal muscle membrane cholesterol and cytoskeletal derangement known to compromise glucose transporter (GLUT)4 regulation occurs early after high-fat feeding. We fed 6-wk-old male C57BL/6NJ mice either a low-fat (LF, 10% kcal) or a high-fat (HF, 45% kcal) diet for 1 wk. This HF feeding challenge was associated with an increase, albeit slight, in body mass, glucose intolerance, and hyperinsulinemia. Liver analyses did not reveal signs of hepatic insulin resistance; however, skeletal muscle immunoblots of triad-enriched regions containing transverse tubule membrane showed a marked loss of stimulated GLUT4 recruitment. An increase in cholesterol was also found in these fractions from HF-fed mice. These derangements were associated with a marked loss of cortical filamentous actin (F-actin) that is essential for GLUT4 regulation and known to be compromised by increases in membrane cholesterol. Both the withdrawal of the HF diet and two subcutaneous injections of the cholesterol-lowering agent methyl-ß-cyclodextrin at 3 and 6 days during the 1-wk HF feeding intervention completely mitigated cholesterol accumulation, cortical F-actin loss, and GLUT4 dysregulation. Moreover, these beneficial membrane/cytoskeletal changes occurred concomitant with a full restoration of metabolic responses. These results identify skeletal muscle membrane cholesterol accumulation as an early, reversible, feature of insulin resistance and suggest cortical F-actin loss as an early derangement of skeletal muscle insulin resistance.


Assuntos
Membrana Celular/metabolismo , Colesterol/metabolismo , Dieta Hiperlipídica/efeitos adversos , Intolerância à Glucose/etiologia , Resistência à Insulina , Músculo Esquelético/metabolismo , Animais , Membrana Celular/efeitos dos fármacos , Colesterol/farmacologia , Dieta Ocidental/efeitos adversos , Gorduras na Dieta/farmacologia , Intolerância à Glucose/metabolismo , Intolerância à Glucose/prevenção & controle , Hiperinsulinismo/etiologia , Hiperinsulinismo/metabolismo , Hiperinsulinismo/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/efeitos dos fármacos , beta-Ciclodextrinas/farmacologia , beta-Ciclodextrinas/uso terapêutico
14.
Diabetes ; 68(7): 1403-1414, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31010957

RESUMO

The neuropeptide urocortin 2 (UCN2) and its receptor corticotropin-releasing hormone receptor 2 (CRHR2) are highly expressed in skeletal muscle and play a role in regulating energy balance and glucose metabolism. We investigated a modified UCN2 peptide as a potential therapeutic agent for the treatment of obesity and insulin resistance, with a specific focus on skeletal muscle. High-fat-fed mice (C57BL/6J) were injected daily with a PEGylated UCN2 peptide (compound A) at 0.3 mg/kg subcutaneously for 14 days. Compound A reduced body weight, food intake, whole-body fat mass, and intramuscular triglycerides compared with vehicle-treated controls. Furthermore, whole-body glucose tolerance was improved by compound A treatment, with increased insulin-stimulated Akt phosphorylation at Ser473 and Thr308 in skeletal muscle, concomitant with increased glucose transport into extensor digitorum longus and gastrocnemius muscle. Mechanistically, this is linked to a direct effect on skeletal muscle because ex vivo exposure of soleus muscle from chow-fed lean mice to compound A increased glucose transport and insulin signaling. Moreover, exposure of GLUT4-Myc-labeled L6 myoblasts to compound A increased GLUT4 trafficking. Our results demonstrate that modified UCN2 peptides may be efficacious in the treatment of type 2 diabetes by acting as an insulin sensitizer in skeletal muscle.


Assuntos
Glucose/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Urocortinas/farmacologia , Animais , Western Blotting , Composição Corporal/efeitos dos fármacos , Eletroporação , Células HEK293 , Humanos , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos , Urocortinas/química
15.
J Lipid Res ; 59(7): 1148-1163, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29794037

RESUMO

Ceramides contribute to obesity-linked insulin resistance and inflammation in vivo, but whether this is a cell-autonomous phenomenon is debated, particularly in muscle, which dictates whole-body glucose uptake. We comprehensively analyzed lipid species produced in response to fatty acids and examined the consequence to insulin resistance and pro-inflammatory pathways. L6 myotubes were incubated with BSA-adsorbed palmitate or palmitoleate in the presence of myriocin, fenretinide, or fumonisin B1. Lipid species were determined by lipidomic analysis. Insulin sensitivity was scored by Akt phosphorylation and glucose transporter 4 (GLUT4) translocation, while pro-inflammatory indices were estimated by IκBα degradation and cytokine expression. Palmitate, but not palmitoleate, had mild effects on Akt phosphorylation but significantly inhibited insulin-stimulated GLUT4 translocation and increased expression of pro-inflammatory cytokines Il6 and Ccl2 Ceramides, hexosylceramides, and sphingosine-1-phosphate significantly heightened by palmitate correlated negatively with insulin sensitivity and positively with pro-inflammatory indices. Inhibition of sphingolipid pathways led to marked changes in cellular lipids, but did not prevent palmitate-induced impairment of insulin-stimulated GLUT4 translocation, suggesting that palmitate-induced accumulation of deleterious lipids and insulin resistance are correlated but independent events in myotubes. We propose that muscle cell-endogenous ceramide production does not evoke insulin resistance and that deleterious effects of ceramides in vivo may arise through ancillary cell communication.


Assuntos
Ácidos Graxos/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Resistência à Insulina , Músculos/metabolismo , Músculos/patologia , Transdução de Sinais , Esfingolipídeos/metabolismo , Animais , Inflamação/metabolismo , Inflamação/patologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , NF-kappa B/metabolismo , Ácido Palmítico/farmacologia , Transporte Proteico/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos
16.
Am J Physiol Endocrinol Metab ; 314(2): E152-E164, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28978544

RESUMO

Intramuscular triglyceride (IMTG) concentration is elevated in insulin-resistant individuals and was once thought to promote insulin resistance. However, endurance-trained athletes have equivalent concentration of IMTG compared with individuals with type 2 diabetes, and have very low risk of diabetes, termed the "athlete's paradox." We now know that IMTG synthesis is positively related to insulin sensitivity, but the exact mechanisms for this are unclear. To understand the relationship between IMTG synthesis and insulin sensitivity, we measured IMTG synthesis in obese control subjects, endurance-trained athletes, and individuals with type 2 diabetes during rest, exercise, and recovery. IMTG synthesis rates were positively related to insulin sensitivity, cytosolic accumulation of DAG, and decreased accumulation of C18:0 ceramide and glucosylceramide. Greater rates of IMTG synthesis in athletes were not explained by alterations in FFA concentration, DGAT1 mRNA expression, or protein content. IMTG synthesis during exercise in Ob and T2D indicate utilization as a fuel despite unchanged content, whereas IMTG concentration decreased during exercise in athletes. mRNA expression for genes involved in lipid desaturation and IMTG synthesis were increased after exercise and recovery. Further, in a subset of individuals, exercise decreased cytosolic and membrane di-saturated DAG content, which may help explain insulin sensitization after acute exercise. These data suggest IMTG synthesis rates may influence insulin sensitivity by altering intracellular lipid localization, and decreasing specific ceramide species that promote insulin resistance.


Assuntos
Exercício Físico/fisiologia , Lipogênese/fisiologia , Músculo Esquelético/metabolismo , Triglicerídeos/metabolismo , Adulto , Atletas , Transporte Biológico , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Feminino , Humanos , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos/fisiologia , Masculino , Obesidade/complicações , Obesidade/metabolismo , Obesidade/fisiopatologia , Resistência Física/fisiologia , Descanso
17.
J Biol Chem ; 292(46): 19034-19043, 2017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-28972183

RESUMO

Defects in translocation of the glucose transporter GLUT4 are associated with peripheral insulin resistance, preclinical diabetes, and progression to type 2 diabetes. GLUT4 recruitment to the plasma membrane of skeletal muscle cells requires F-actin remodeling. Insulin signaling in muscle requires p21-activated kinase-1 (PAK1), whose downstream signaling triggers actin remodeling, which promotes GLUT4 vesicle translocation and glucose uptake into skeletal muscle cells. Actin remodeling is a cyclic process, and although PAK1 is known to initiate changes to the cortical actin-binding protein cofilin to stimulate the depolymerizing arm of the cycle, how PAK1 might trigger the polymerizing arm of the cycle remains unresolved. Toward this, we investigated whether PAK1 contributes to the mechanisms involving the actin-binding and -polymerizing proteins neural Wiskott-Aldrich syndrome protein (N-WASP), cortactin, and ARP2/3 subunits. We found that the actin-polymerizing ARP2/3 subunit p41ARC is a PAK1 substrate in skeletal muscle cells. Moreover, co-immunoprecipitation experiments revealed that insulin stimulates p41ARC phosphorylation and increases its association with N-WASP coordinately with the associations of N-WASP with cortactin and actin. Importantly, all of these associations were ablated by the PAK inhibitor IPA3, suggesting that PAK1 activation lies upstream of these actin-polymerizing complexes. Using the N-WASP inhibitor wiskostatin, we further demonstrated that N-WASP is required for localized F-actin polymerization, GLUT4 vesicle translocation, and glucose uptake. These results expand the model of insulin-stimulated glucose uptake in skeletal muscle cells by implicating p41ARC as a new component of the insulin-signaling cascade and connecting PAK1 signaling to N-WASP-cortactin-mediated actin polymerization and GLUT4 vesicle translocation.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Glucose/metabolismo , Músculo Esquelético/metabolismo , Quinases Ativadas por p21/metabolismo , Animais , Transporte Biológico , Linhagem Celular , Insulina/metabolismo , Músculo Esquelético/citologia , Subunidades Proteicas/metabolismo , Ratos , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo
18.
Physiol Rep ; 5(16)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28811359

RESUMO

Insulin action and glucose disposal are enhanced by exercise, yet the mechanisms involved remain imperfectly understood. While the causes of skeletal muscle insulin resistance also remain poorly understood, new evidence suggest excess plasma membrane (PM) cholesterol may contribute by damaging the cortical filamentous actin (F-actin) structure essential for GLUT4 glucose transporter redistribution to the PM upon insulin stimulation. Here, we investigated whether PM cholesterol toxicity was mitigated by exercise. Male C57BL/6J mice were placed on low-fat (LF, 10% kCal) or high-fat (HF, 45% kCal) diets for a total of 8 weeks. During the last 3 weeks of this LF/HF diet intervention, all mice were familiarized with a treadmill for 1 week and then either sham-exercised (0 m/min, 10% grade, 50 min) or exercised (13.5 m/min, 10% grade, 50 min) daily for 2 weeks. HF-feeding induced a significant gain in body mass by 3 weeks. Sham or chronic exercise did not affect food consumption, water intake, or body mass gain. Prior to sham and chronic exercise, "pre-intervention" glucose tolerance tests were performed on all animals and demonstrated that HF-fed mice were glucose intolerant. While sham exercise did not affect glucose tolerance in the LF or HF mice, exercised mice showed an improvement in glucose tolerance. Muscle from sham-exercised HF-fed mice showed a significant increase in PM cholesterol, loss of cortical F-actin, and decrease in insulin-stimulated glucose transport compared to sham-exercised LF-fed mice. These HF-fed skeletal muscle membrane/cytoskeletal abnormalities and insulin resistance were improved in exercised mice. These data reveal a new therapeutic aspect of exercise being regulation of skeletal muscle PM cholesterol homeostasis. Further studies on this mechanism of insulin resistance and the benefits of exercise on its prevention are needed.


Assuntos
Citoesqueleto de Actina/metabolismo , Colesterol/metabolismo , Dieta Hiperlipídica/efeitos adversos , Intolerância à Glucose/prevenção & controle , Resistência à Insulina , Fibras Musculares Esqueléticas/metabolismo , Condicionamento Físico Animal , Animais , Membrana Celular/metabolismo , Intolerância à Glucose/etiologia , Intolerância à Glucose/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
19.
J Lipid Res ; 58(5): 907-915, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28246337

RESUMO

Diacylglycerol kinases (DGKs) catalyze the phosphorylation and conversion of diacylglycerol (DAG) into phosphatidic acid. DGK isozymes have unique primary structures, expression patterns, subcellular localizations, regulatory mechanisms, and DAG preferences. DGKε has a hydrophobic segment that promotes its attachment to membranes and shows substrate specificity for DAG with an arachidonoyl acyl chain in the sn-2 position of the substrate. We determined the role of DGKε in the regulation of energy and glucose homeostasis in relation to diet-induced insulin resistance and obesity using DGKε-KO and wild-type mice. Lipidomic analysis revealed elevated unsaturated and saturated DAG species in skeletal muscle of DGKε KO mice, which was paradoxically associated with increased glucose tolerance. Although skeletal muscle insulin sensitivity was unaltered, whole-body respiratory exchange ratio was reduced, and abundance of mitochondrial markers was increased, indicating a greater reliance on fat oxidation and intracellular lipid metabolism in DGKε KO mice. Thus, the increased intracellular lipids in skeletal muscle from DGKε KO mice may undergo rapid turnover because of increased mitochondrial function and lipid oxidation, rather than storage, which in turn may preserve insulin sensitivity. In conclusion, DGKε plays a role in glucose and energy homeostasis by modulating lipid metabolism in skeletal muscle.


Assuntos
Diacilglicerol Quinase/deficiência , Glucose/metabolismo , Metabolismo dos Lipídeos , Animais , Composição Corporal , Diacilglicerol Quinase/genética , Metabolismo Energético , Técnicas de Inativação de Genes , Teste de Tolerância a Glucose , Homeostase , Fígado/metabolismo , Masculino , Camundongos , Camundongos Obesos , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Oxirredução
20.
J Med Chem ; 59(12): 5904-10, 2016 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-27213958

RESUMO

To develop novel treatments for type 2 diabetes and dyslipidemia, we pursued inhibitors of serine palmitoyl transferase (SPT). To this end compounds 1 and 2 were developed as potent SPT inhibitors in vitro. 1 and 2 reduce plasma ceramides in rodents, have a slight trend toward enhanced insulin sensitization in DIO mice, and reduce triglycerides and raise HDL in cholesterol/cholic acid fed rats. Unfortunately these molecules cause a gastric enteropathy after chronic dosing in rats.


Assuntos
Inibidores Enzimáticos/farmacologia , Imidazóis/farmacologia , Piperidinas/farmacologia , Pirazóis/farmacologia , Piridinas/farmacologia , Serina C-Palmitoiltransferase/antagonistas & inibidores , Administração Oral , Animais , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/química , Humanos , Imidazóis/administração & dosagem , Imidazóis/química , Células MCF-7 , Masculino , Camundongos , Camundongos Obesos , Estrutura Molecular , Piperidinas/administração & dosagem , Piperidinas/química , Pirazóis/administração & dosagem , Pirazóis/química , Piridinas/administração & dosagem , Piridinas/química , Ratos , Ratos Sprague-Dawley , Serina C-Palmitoiltransferase/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...